TY - JOUR
T1 - Superconducting Properties of Pd1- xPt xBi2over a Wide Pressure Range
AU - Suzuki, Ai
AU - Ikeda, Mitsuki
AU - Ishii, Hirofumi
AU - Liao, Yen Fa
AU - Takabayashi, Yasuhiro
AU - Hayashi, Kouichi
AU - Goto, Hidenori
AU - Eguchi, Ritsuko
AU - Kubozono, Yoshihiro
N1 - Funding Information:
This study was partly supported by Grants-in-Aid (19H02676, 20H05878, and 20H05879) from MEXT and the Program for Promoting the Enhancement of Research Universities. The XRD measurements at SPring-8 were supported by 2018B4140 and 2019A4131.
Publisher Copyright:
© 2022 American Chemical Society.
PY - 2022
Y1 - 2022
N2 - The topological insulator, PdBi2, exhibits two different crystal phases (i.e., α-PdBi2 and β-PdBi2) at ambient pressure. Here, we prepared new superconducting materials, Pd1-xPtxBi2, via Pt doping of PdBi2 and investigated their superconducting properties. Pt doping of PdBi2 may be anticipated to show higher superconducting transition temperature Tc than pure PdBi2 because of the example that Pt doping of PdTe2 (Tc = 2.0 K) leads to higher Tc (Tc = 3.2 K for Pd0.25Pt0.75Te2) via reconstruction of Fermi surface topology. The Pd1-xPtxBi2 samples prepared in this study contained both the α and β phases, as seen in the XRD patterns. The x dependence of Tc was investigated for Pd1-xPtxBi2; the highest Tc value (4.35 K) was observed at x = 0.12, which was probably due to the β phase. In this study, the crystal structure and superconducting transition temperature of Pd0.88(6)Pt0.12(6)Bi2.2(2) are fully investigated over a wide pressure (p) range. Both α phase and β phase remain up to a pressure of approximately 20 GPa; however, the amount of the α phase gradually decreased with an increase in pressure. The pressure dependence of unit cell volume V of the α and β phases resulted in smooth shrinkage of the lattice. The temperature (T) dependence of the electrical resistance (R) at different pressures showed enhancement of Tc of the α phase with pressure and almost constant Tc in the β phase, with a trend that is similar to that of α-PdBi2 and β-PdBi2. The temperature dependence of the upper critical field at 10.5 GPa suggested that it deviates from the simple s-wave dirty/clean limit model and follows the p-wave polar model, which causes the topologically nontrivial nature of superconductivity.
AB - The topological insulator, PdBi2, exhibits two different crystal phases (i.e., α-PdBi2 and β-PdBi2) at ambient pressure. Here, we prepared new superconducting materials, Pd1-xPtxBi2, via Pt doping of PdBi2 and investigated their superconducting properties. Pt doping of PdBi2 may be anticipated to show higher superconducting transition temperature Tc than pure PdBi2 because of the example that Pt doping of PdTe2 (Tc = 2.0 K) leads to higher Tc (Tc = 3.2 K for Pd0.25Pt0.75Te2) via reconstruction of Fermi surface topology. The Pd1-xPtxBi2 samples prepared in this study contained both the α and β phases, as seen in the XRD patterns. The x dependence of Tc was investigated for Pd1-xPtxBi2; the highest Tc value (4.35 K) was observed at x = 0.12, which was probably due to the β phase. In this study, the crystal structure and superconducting transition temperature of Pd0.88(6)Pt0.12(6)Bi2.2(2) are fully investigated over a wide pressure (p) range. Both α phase and β phase remain up to a pressure of approximately 20 GPa; however, the amount of the α phase gradually decreased with an increase in pressure. The pressure dependence of unit cell volume V of the α and β phases resulted in smooth shrinkage of the lattice. The temperature (T) dependence of the electrical resistance (R) at different pressures showed enhancement of Tc of the α phase with pressure and almost constant Tc in the β phase, with a trend that is similar to that of α-PdBi2 and β-PdBi2. The temperature dependence of the upper critical field at 10.5 GPa suggested that it deviates from the simple s-wave dirty/clean limit model and follows the p-wave polar model, which causes the topologically nontrivial nature of superconductivity.
UR - http://www.scopus.com/inward/record.url?scp=85131968938&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85131968938&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.2c01972
DO - 10.1021/acs.jpcc.2c01972
M3 - Article
AN - SCOPUS:85131968938
SN - 1932-7447
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
ER -