Table-structure recognition method using neural networks for implicit ruled line estimation and cell estimation

Manabu Ohta, Ryoya Yamada, Teruhito Kanazawa, Atsuhiro Takasu

研究成果

抄録

Tables are often used to summarize accurate values in academic papers, while graphs are used to show them visually. Automatic graph generation from a table is therefore a topic of research interest. Given that the way tables are written varies depending on the author, in earlier work we proposed a cell-detection-based table-structure recognition method. Our method achieved fair performance in experiments using the ICDAR 2013 table competition dataset, but could not outperform the top-ranked participant in the competition. This paper proposes an improved method using two neural networks: one estimates implicit ruled lines that are necessary to separate cells but are undrawn, and the other estimates cells by merging detected tokens in a table. We demonstrated the effectiveness of the proposed method by experiments using the same ICDAR 2013 dataset. It achieved an F-measure of 0.955, thereby outperforming the other methods including the top-ranked participant.

本文言語English
ホスト出版物のタイトルDocEng 2021 - Proceedings of the 2021 ACM Symposium on Document Engineering
出版社Association for Computing Machinery, Inc
ISBN(電子版)9781450385961
DOI
出版ステータスPublished - 8月 16 2021
イベント21st ACM Symposium on Document Engineering, DocEng 2021 - Virtual, Online
継続期間: 8月 24 20218月 27 2021

出版物シリーズ

名前DocEng 2021 - Proceedings of the 2021 ACM Symposium on Document Engineering

Conference

Conference21st ACM Symposium on Document Engineering, DocEng 2021
国/地域Ireland
CityVirtual, Online
Period8/24/218/27/21

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • 情報システム
  • ソフトウェア

フィンガープリント

「Table-structure recognition method using neural networks for implicit ruled line estimation and cell estimation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル