Tate-Vogel completions of half-exact functors

Yuji Yoshino

研究成果査読

3 被引用数 (Scopus)

抄録

We provide a general method to construct the Tate-Vogel homology theory for a general half-exact functor with one variable, aiming at a good generalization of Cohen-Macaulay approximations of modules over commutative Gorenstein rings. For a half exact functor F, using the left and right satellites (Sn and sn), we define F(X) = lim SnSn F(X) and F(X) = lim Sn Sn F(X), and call F and F the Tate-Vogel completions of F. We provide several properties of F and F, and their relations with the G-dimension and the projective dimension of the functor F. A comparison theorem of Tate-Vogel completions with ordinary Tate-Vogel homologies is proved. If F is a half exact functor over the category of R-modules, where R is a commutative Noetherian local ring inspired by Martsinkovsky's works, we can define the invariants ξ(F) and η(F) of F. If F = ExtRi (M,), then they coincide with Martsinkovsky's ξ-invariants and Auslander's delta invariants. Our advantage is that we can consider these invariants for any half exact functors. We also compute these invariants for the local cohomology functors.

本文言語English
ページ(範囲)171-200
ページ数30
ジャーナルAlgebras and Representation Theory
4
2
DOI
出版ステータスPublished - 6月 1 2001

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Tate-Vogel completions of half-exact functors」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル