TY - JOUR
T1 - The nature of hydroxyl groups in aluminosilicate glasses
T2 - Quantifying Si-OH and Al-OH abundances along the SiO2-NaAlSiO4 join by 1H, 27Al-1H and 29Si-1H NMR spectroscopy
AU - Malfait, Wim J.
AU - Xue, Xianyu
PY - 2010/1/15
Y1 - 2010/1/15
N2 - The combined results of 27Al-1H and 1H-29Si-1H cross polarization NMR experiments for hydrous glasses (containing 0.5-2 wt% water) along the SiO2-NaAlSiO4 join confirm that the dissolution mechanism of water in aluminosilicate glasses is fundamentally the same as for Al-free systems, i.e. the dissolved water ruptures oxygen bridges and creates Si-OH and Al-OH groups, in addition to forming molecular water (H2Omol). The fraction of Al-OH increases non-linearly as the Al content increases with up to half of the OH groups as Al-OH for compositions close to NaAlSiO4. The relative abundances of the different species are controlled by the degree of Al-avoidance and the relative tendency of hydrolysis of the different types of oxygen bridges, Si-O-Si, Si-O-Al and Al-O-Al. A set of homogeneous reactions is derived to model the measured Al-OH/Si-OH speciation, and the obtained equilibrium constants are in agreement with literature data on the degree of Al-avoidance. With these equilibrium constants, the abundance of the different oxygen species, i.e. Si-O-Si, Si-O-Al, Al-O-Al, Si-OH, Al-OH and H2Omol, can be predicted for the entire range of water and Al contents.
AB - The combined results of 27Al-1H and 1H-29Si-1H cross polarization NMR experiments for hydrous glasses (containing 0.5-2 wt% water) along the SiO2-NaAlSiO4 join confirm that the dissolution mechanism of water in aluminosilicate glasses is fundamentally the same as for Al-free systems, i.e. the dissolved water ruptures oxygen bridges and creates Si-OH and Al-OH groups, in addition to forming molecular water (H2Omol). The fraction of Al-OH increases non-linearly as the Al content increases with up to half of the OH groups as Al-OH for compositions close to NaAlSiO4. The relative abundances of the different species are controlled by the degree of Al-avoidance and the relative tendency of hydrolysis of the different types of oxygen bridges, Si-O-Si, Si-O-Al and Al-O-Al. A set of homogeneous reactions is derived to model the measured Al-OH/Si-OH speciation, and the obtained equilibrium constants are in agreement with literature data on the degree of Al-avoidance. With these equilibrium constants, the abundance of the different oxygen species, i.e. Si-O-Si, Si-O-Al, Al-O-Al, Si-OH, Al-OH and H2Omol, can be predicted for the entire range of water and Al contents.
UR - http://www.scopus.com/inward/record.url?scp=70649090284&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70649090284&partnerID=8YFLogxK
U2 - 10.1016/j.gca.2009.10.036
DO - 10.1016/j.gca.2009.10.036
M3 - Article
AN - SCOPUS:70649090284
SN - 0016-7037
VL - 74
SP - 719
EP - 737
JO - Geochmica et Cosmochimica Acta
JF - Geochmica et Cosmochimica Acta
IS - 2
ER -