The projective dimension of the edge ideal of a very well-covered graph

Kyouko Kimura, Naoki Terai, Siamak Yassemi

研究成果査読

11 被引用数 (Scopus)

抄録

A very well-covered graph is an unmixed graph whose covering number is half of the number of vertices. We construct an explicit minimal free resolution of the cover ideal of a Cohen-Macaulay very well-covered graph. Using this resolution, we characterize the projective dimension of the edge ideal of a very well-covered graph in terms of a pairwise -disjoint set of complete bipartite subgraphs of the graph. We also show nondecreasing property of the projective dimension of symbolic powers of the edge ideal of a very well-covered graph with respect to the exponents.

本文言語English
ページ(範囲)160-179
ページ数20
ジャーナルNagoya Mathematical Journal
230
DOI
出版ステータスPublished - 6月 1 2018
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「The projective dimension of the edge ideal of a very well-covered graph」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル