TY - JOUR
T1 - The promotion of nephropathy by Porphyromonas gingivalis lipopolysaccharide via toll-like receptors
AU - Kajiwara, Koichiro
AU - Takata, Shunsuke
AU - To, Thao T.
AU - Takara, Kenyo
AU - Hatakeyama, Yuji
AU - Tamaoki, Sachio
AU - Darveau, Richard Peters
AU - Ishikawa, Hiroyuki
AU - Sawa, Yoshihiko
N1 - Publisher Copyright:
© 2017 The Author(s).
PY - 2017/9/22
Y1 - 2017/9/22
N2 - Background: Recently, we reported that toll-like receptor (TLR)2 and TLR4 localized on the glomerular endothelium in the glomeruli of streptozotocin (STZ)-induced type 1 diabetic mice and high fat diet feed-induced type 2 diabetic mice, and that periodontal pathogen Porphyromonas gingivalis LPS (Pg-LPS) administration lowered the survival rate of diabetic mice. The present study aims to examine the effect of TLR4 blocking on the suppression of Pg-LPS-induced diabetic nephropathy. Methods: The survival rate and morphological/biochemical features for streptozotocin-induced diabetic mice with Pg-LPS and TLR4 blocker eritoran administration were investigated by reporter gene assay, urine and blood analysis, immunohistochemistry, and real time-PCR. Results and Conclusions: All of the diabetic mice administered Pg-LPS were euthanized within the survival period of almost all of the diabetic mice. The blood urea nitrogen and creatinine, expression of TLR2 and TGF-b, and type 1 collagen accumulation, in the diabetic mice increased significantly with the Pg-LPS administration. In spite of the limited TLR4 activation with Pg-LPS, the TLR4 blocker eritoran decreased blood urea nitrogen and creatinine, and raised the survival rate of the Pg-LPS-administered diabetic mice slightly. The high expression levels of TLR2, TGF-b, and type 1 collagen in Pg-LPS-administered diabetic mice decreased with eritoran. Nuclear STAT3 which enhances TLR2 expression was detected in the TLR2-expressing glomeruli of diabetic mice. The TLR2 and STAT3 gene expression increased by the Pg-LPS administration but decreased with eritoran. These may suggest that Pg-LPS-induced diabetic nephropathy is mainly dependent on TLR2 signaling on glomerular endothelial cells, and that TLR4 blocker eritoran may play a role to slow the progress of diabetic nephropathy.
AB - Background: Recently, we reported that toll-like receptor (TLR)2 and TLR4 localized on the glomerular endothelium in the glomeruli of streptozotocin (STZ)-induced type 1 diabetic mice and high fat diet feed-induced type 2 diabetic mice, and that periodontal pathogen Porphyromonas gingivalis LPS (Pg-LPS) administration lowered the survival rate of diabetic mice. The present study aims to examine the effect of TLR4 blocking on the suppression of Pg-LPS-induced diabetic nephropathy. Methods: The survival rate and morphological/biochemical features for streptozotocin-induced diabetic mice with Pg-LPS and TLR4 blocker eritoran administration were investigated by reporter gene assay, urine and blood analysis, immunohistochemistry, and real time-PCR. Results and Conclusions: All of the diabetic mice administered Pg-LPS were euthanized within the survival period of almost all of the diabetic mice. The blood urea nitrogen and creatinine, expression of TLR2 and TGF-b, and type 1 collagen accumulation, in the diabetic mice increased significantly with the Pg-LPS administration. In spite of the limited TLR4 activation with Pg-LPS, the TLR4 blocker eritoran decreased blood urea nitrogen and creatinine, and raised the survival rate of the Pg-LPS-administered diabetic mice slightly. The high expression levels of TLR2, TGF-b, and type 1 collagen in Pg-LPS-administered diabetic mice decreased with eritoran. Nuclear STAT3 which enhances TLR2 expression was detected in the TLR2-expressing glomeruli of diabetic mice. The TLR2 and STAT3 gene expression increased by the Pg-LPS administration but decreased with eritoran. These may suggest that Pg-LPS-induced diabetic nephropathy is mainly dependent on TLR2 signaling on glomerular endothelial cells, and that TLR4 blocker eritoran may play a role to slow the progress of diabetic nephropathy.
UR - http://www.scopus.com/inward/record.url?scp=85029870685&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85029870685&partnerID=8YFLogxK
U2 - 10.1186/s13098-017-0271-8
DO - 10.1186/s13098-017-0271-8
M3 - Article
AN - SCOPUS:85029870685
SN - 1758-5996
VL - 9
JO - Diabetology and Metabolic Syndrome
JF - Diabetology and Metabolic Syndrome
IS - 1
M1 - 73
ER -