Theory of chemical bonds in metalloenzymes XVIII. Importance of mixed-valence configurations for Mn5O5, CaMn 4O5 and Ca2Mn3O5 clusters revealed by UB3LYP computations. A bio-inspired strategy for artificial photosynthesis

K. Yamaguchi, Y. Kitagawa, H. Isobe, M. Shoji, S. Yamanaka, M. Okumura

研究成果査読

8 被引用数 (Scopus)

抄録

Full geometry optimizations of mixed-valence (MV) Mn(II) RMn(II)aMn(IV)b Mn(IV)cMn(III) d (1), Ca(II)RMn(III)aMn(III) bMn(IV)cMn(III)d (2) and Ca(II) RCa(II)a Mn(IV)bMn(IV)cMn(III) d (3) clusters by UB3LYP have been performed to elucidate possible roles of substitutions of Mn(II) with Ca(II) in parent manganese oxides. The optimized Mn-Mn and Mn-Ca distances for 1, 2 and 3 have been compared with the EXAFS and XRD experimental structures of the oxygen evolving complex (OEC) of photosystem II (PSII) to elucidate variations of geometrical structures and valence fluctuations by the substitutions. The optimized Mn-O distances of 1, 2 and 3 have been examined to elucidate Jahn-Teller distortions induced by the Mn(III) ions. The computational results have illuminated possible origins of the elongated Mn-Mn distances and Mn-O distances in the high-resolution XRD structure by Umena et al. Implications of the computational results have been discussed in relation to chemical modifications of multi-nuclear manganese complexes with substitutions of Mn(II) with Ca(II) for rational design of artificial catalysts for water oxidation. A new bio-inspired strategy for artificial photosynthesis is also proposed based on a guiding principle, namely use of hole- and electron-doped strongly correlated electron systems (SCES) for oxidation and reduction reactions instead of conventional semiconductor materials.

本文言語English
ページ(範囲)138-149
ページ数12
ジャーナルPolyhedron
57
DOI
出版ステータスPublished - 7月 2 2013

ASJC Scopus subject areas

  • 物理化学および理論化学
  • 無機化学
  • 材料化学

フィンガープリント

「Theory of chemical bonds in metalloenzymes XVIII. Importance of mixed-valence configurations for Mn5O5, CaMn 4O5 and Ca2Mn3O5 clusters revealed by UB3LYP computations. A bio-inspired strategy for artificial photosynthesis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル