Total curvatures of model surfaces control topology of complete open manifolds with radial curvature bounded below. II

Kei Kondo, Minoru Tanaka

研究成果査読

16 被引用数 (Scopus)

抄録

We prove, as our main theorem, the finiteness of topological type of a complete open Riemannian manifold M with a base point p ∈ M whose radial curvature at p is bounded from below by that of a non-compact model surface of revolution M which admits a finite total curvature and has no pair of cut points in a sector. Here a sector is, by definition, a domain cut off by two meridians emanating from the base point p ∈ M. Notice that our model M does not always satisfy the diameter growth condition introduced by Abresch and Gromoll. In order to prove the main theorem, we need a new type of the Toponogov comparison theorem. As an application of the main theorem, we present a partial answer to Milnor's open conjecture on the fundamental group of complete open manifolds.

本文言語English
ページ(範囲)6293-6324
ページ数32
ジャーナルTransactions of the American Mathematical Society
362
12
DOI
出版ステータスPublished - 12月 2010
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Total curvatures of model surfaces control topology of complete open manifolds with radial curvature bounded below. II」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル