TY - JOUR
T1 - Trace element fractionation in deep subduction zones inferred from a lawsonite-eclogite xenolith from the Colorado Plateau
AU - Usui, Tomohiro
AU - Kobayashi, Katsura
AU - Nakamura, Eizo
AU - Helmstaedt, Herwart
N1 - Funding Information:
We are very much thankful to all of the PML members for their scientific guidance, technical support and valuable discussion. J.M.D. Day and E. Hill are also acknowledged for improving the quality of this paper. We thank C. Spandler and T. Tsujimori for constructive reviews of this manuscript, and A. Simon for editorial handling. This study was financially supported in part by grants from the Ministry of Education, Science, Sports and Culture of Japan (E.N.) and by the program “Center of Excellence for the 21st Century in Japan” (E.N.).
PY - 2007/4/30
Y1 - 2007/4/30
N2 - A coesite-bearing, lawsonite-eclogite xenolith from the Colorado Plateau, interpreted as a fragment of the subducted Farallon plate, is used to characterize trace element behavior in subducted oceanic crust. The xenolith consists of almandine-rich garnet, omphacite, lawsonite, phengite, rutile, pyrite and zircon as the primary mineral assemblage. Garnet crystals are extremely zoned with respect to their Mn contents, with core to rim variation from ∼ 1.4 to ∼ 0.2 wt.%. The euhedral zoning feature of garnet crystals and its included mineral assemblages suggest that the garnet continued to grow in the coesite stability field during prograde lawsonite eclogite facies metamorphism. In the lawsonite-eclogite xenoliths, garnet dominates the heavy rare earth elements (HREE), and lawsonite dominates both light rare earth elements (LREE) and Sr inventories. Combining the mineralogical and petrographic observations with precise spatial resolution ion microprobe analyses (< 15 μm) of zoned garnet as well as lawsonite inclusions in garnet, we investigated trace element fractionation in coesite stability field during lawsonite eclogite facies metamorphism. Garnet shows progressive HREE depletion from core to rim, suggesting that HREE, which once partitioned into garnet crystal, would not be involved in postdated metamorphic reactions due to the high partition coefficients of HREE into garnet. Lawsonite inclusions in garnet, which represent lower metamorphic condition relative to lawsonite in the matrix, have LREE concentrations ∼ 10 times lower than those of matrix lawsonite. On the contrary, the concentration of Sr in the included lawsonite is (< 20 relative %) lower than that of the matrix lawsonite. Based on constraints from metamorphic history recorded in the prograde-zoned garnet and mass balance among all constituent minerals in the lawsonite-eclogite xenolith, this contrasting feature for Sr and LREE of lawsonite is most plausibly explained by the hypothesis that allanite coexisting with included lawsonite might have decomposed during prograde metamorphism. The LREE released from the decomposing allanite would have been incorporated into lawsonite crystals. Consequently, REE and Sr could be retained in subducting oceanic crust even in the coesite stability field, if the slab is sufficiently cold enough to pass though the lawsonite eclogite facies.
AB - A coesite-bearing, lawsonite-eclogite xenolith from the Colorado Plateau, interpreted as a fragment of the subducted Farallon plate, is used to characterize trace element behavior in subducted oceanic crust. The xenolith consists of almandine-rich garnet, omphacite, lawsonite, phengite, rutile, pyrite and zircon as the primary mineral assemblage. Garnet crystals are extremely zoned with respect to their Mn contents, with core to rim variation from ∼ 1.4 to ∼ 0.2 wt.%. The euhedral zoning feature of garnet crystals and its included mineral assemblages suggest that the garnet continued to grow in the coesite stability field during prograde lawsonite eclogite facies metamorphism. In the lawsonite-eclogite xenoliths, garnet dominates the heavy rare earth elements (HREE), and lawsonite dominates both light rare earth elements (LREE) and Sr inventories. Combining the mineralogical and petrographic observations with precise spatial resolution ion microprobe analyses (< 15 μm) of zoned garnet as well as lawsonite inclusions in garnet, we investigated trace element fractionation in coesite stability field during lawsonite eclogite facies metamorphism. Garnet shows progressive HREE depletion from core to rim, suggesting that HREE, which once partitioned into garnet crystal, would not be involved in postdated metamorphic reactions due to the high partition coefficients of HREE into garnet. Lawsonite inclusions in garnet, which represent lower metamorphic condition relative to lawsonite in the matrix, have LREE concentrations ∼ 10 times lower than those of matrix lawsonite. On the contrary, the concentration of Sr in the included lawsonite is (< 20 relative %) lower than that of the matrix lawsonite. Based on constraints from metamorphic history recorded in the prograde-zoned garnet and mass balance among all constituent minerals in the lawsonite-eclogite xenolith, this contrasting feature for Sr and LREE of lawsonite is most plausibly explained by the hypothesis that allanite coexisting with included lawsonite might have decomposed during prograde metamorphism. The LREE released from the decomposing allanite would have been incorporated into lawsonite crystals. Consequently, REE and Sr could be retained in subducting oceanic crust even in the coesite stability field, if the slab is sufficiently cold enough to pass though the lawsonite eclogite facies.
KW - Coesite
KW - Ion microprobe
KW - Lawsonite eclogite
KW - Subduction-zone
KW - Trace element
UR - http://www.scopus.com/inward/record.url?scp=34147160232&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34147160232&partnerID=8YFLogxK
U2 - 10.1016/j.chemgeo.2006.08.009
DO - 10.1016/j.chemgeo.2006.08.009
M3 - Article
AN - SCOPUS:34147160232
SN - 0009-2541
VL - 239
SP - 336
EP - 351
JO - Chemical Geology
JF - Chemical Geology
IS - 3-4
ER -