Traveling fronts of pyramidal shapes in the Allen-Cahn equations

研究成果査読

84 被引用数 (Scopus)

抄録

This paper studies pyramidal traveling fronts in the Allen-Cahn equation or in the Nagumo equation. For the nonlinearity we are concerned mainly with the bistable reaction term with unbalanced energy density. Two-dimensional V-form waves and cylindrically symmetric waves in higher dimensions have been recently studied. Our aim in this paper is to construct truly threedimensional traveling waves. For a pyramid that satisfies a condition, we construct a traveling front for which the contour line has a pyramidal shape. We also construct generalized pyramidal fronts and traveling waves of a hybrid type between pyramidal waves and planar V-form waves. We use the comparison principles and construct traveling fronts between supersolutions and subsolutions.

本文言語English
ページ(範囲)319-344
ページ数26
ジャーナルSIAM Journal on Mathematical Analysis
39
1
DOI
出版ステータスPublished - 12月 1 2007
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 計算数学
  • 応用数学

フィンガープリント

「Traveling fronts of pyramidal shapes in the Allen-Cahn equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル