ULK1 phosphorylates Sec23A and mediates autophagy-induced inhibition of ER-to-Golgi traffic

Wenjia Gan, Caiyun Zhang, Ka Yu Siu, Ayano Satoh, Julian A. Tanner, Sidney Yu


37 被引用数 (Scopus)


Background: Autophagy is an inducible autodigestive process that allows cells to recycle proteins and other materials for survival during stress and nutrient deprived conditions. The kinase ULK1 is required to activate this process. ULK1 phosphorylates a number of target proteins and regulates many cellular processes including the early secretory pathway. Recently, ULK1 has been demonstrated to phosphorylate Sec16 and affects the transport of serotonin transporter at the ER exit sites (ERES), but whether ULK1 may affect the transport of other cargo proteins and general secretion has not been fully addressed. Results: In this study, we identified Sec23A, a component of the COPII vesicle coat, as a target of ULK1 phosphorylation. Elevated autophagy, induced by amino acid starvation, rapamycin, or overexpression of ULK1 caused aggregation of the ERES, a region of the ER dedicated for the budding of COPII vesicles. Transport of cargo proteins was also inhibited under these conditions and was retained at the ERES. ULK1 phosphorylation of Sec23A reduced the interaction between Sec23A and Sec31A. We identified serine 207, serine 312 and threonine 405 on Sec23A as ULK1 phosphorylation sites. Among these residues, serine 207, when changed to phospho-deficient and phospho-mimicking mutants, most faithfully recapitulated the above-mentioned effects of ULK1 phospho-regulation. Conclusion: These findings identify Sec23A as a new target of ULK1 and uncover a mechanism of coordinating intracellular protein transport and autophagy.

ジャーナルBMC Cell Biology
出版ステータスPublished - 5月 10 2017

ASJC Scopus subject areas

  • 細胞生物学


「ULK1 phosphorylates Sec23A and mediates autophagy-induced inhibition of ER-to-Golgi traffic」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。