Unchaining surgery and topology of symplectic 4-manifolds

R. İnanç Baykur, Kenta Hayano, Naoyuki Monden

研究成果査読

抄録

We study a symplectic surgery operation we call unchaining, which effectively reduces the second Betti number and the symplectic Kodaira dimension at the same time. Using unchaining, we give novel constructions of symplectic Calabi–Yau surfaces from complex surfaces of general type and completely resolve a conjecture of Stipsicz on the existence of exceptional sections in Lefschetz fibrations. Combining the unchaining surgery with others, which all correspond to certain monodromy substitutions for Lefschetz pencils, we provide further applications, such as new constructions of exotic symplectic 4-manifolds, and inequivalent pencils of the same genera and the same number of base points on families of symplectic 4-manifolds. Meanwhile, we present a handy criterion for determining from the monodromy of a pencil whether its total space is spin or not.

本文言語English
論文番号77
ジャーナルMathematische Zeitschrift
303
3
DOI
出版ステータスPublished - 3月 2023

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Unchaining surgery and topology of symplectic 4-manifolds」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル